Dimensional analysis, spin freezing and magnetization in spin ice.
نویسنده
چکیده
Dimensional analysis is shown to give an insight into the non-ergodic behaviour of spin ice below its apparent 'spin freezing' temperature. Expressions are derived for the temperature-dependent magnetic susceptibility that are found to be highly consistent with the previously reported field cooled and zero field cooled magnetization of the spin ice dysprosium titanate, Dy(2)Ti(2)O(7), as well as with the theory of a 'magnetolyte', including Debye-Hückel screening and Wien dissociation. The spin freezing is inferred to reflect the inability of the quasi-free magnetic charges or 'monopoles' that comprise the magnetolyte to fully screen an applied magnetic field on the timescale of an experiment. The apparent freezing temperature (T(f)≈0.65 K) is identified as the point where the Debye screening length becomes greater than the Bjerrum association distance for charge pairs. Combining these dimensional arguments with Onsager's theory of the Wien effect, it is shown that magnetization data at relatively high field (Snyder et al 2004 Phys. Rev. B 69 064414) may be used to estimate the elementary magnetic charge of spin ice, as well as the temperature-dependent monopole density. Evidence is presented of a non-equilibrium population of monopoles below T≈0.2 K. It is also shown how Onsager's microscopic theory of field-induced monopole pair separation naturally suggests the 'magnetization jumps' in Dy(2)Ti(2)O(7) observed at applied fields of the order of ∼ 0.1 T. It is concluded that the results of dimensional analysis, when combined with Onsager's theory, provide an accurate, albeit approximate, description of the properties of Dy(2)Ti(2)O(7), that could be improved by the development of a lattice theory of the Wien effect, or tested on other spin ice materials.
منابع مشابه
Intermediate magnetization state and competing orders in Dy2Ti2O7 and Ho2Ti2O7
Among the frustrated magnetic materials, spin-ice stands out as a particularly interesting system. Residual entropy, freezing and glassiness, Kasteleyn transitions and fractionalization of excitations in three dimensions all stem from a simple classical Hamiltonian. But is the usual spin-ice Hamiltonian a correct description of the experimental systems? Here we address this issue by measuring m...
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملUnconventional magnetization processes and thermal runaway in spin-ice Dy2Ti2O7.
We investigate the nonequilibrium behavior of the spin-ice Dy2Ti2O7 by studying its magnetization as a function of the field sweep rate. Below the enigmatic ''freezing'' temperature T(equil)≈600 mK, we find that even the slowest sweeps fail to yield the equilibrium magnetization curve and instead give an initially much flatter curve. For higher sweep rates, the magnetization develops sharp step...
متن کاملLow-temperature spin freezing in the Dy2Ti2O7 spin ice
We report a study of the low temperature bulk magnetic properties of the spin ice compound Dy2Ti2O7 with particular attention to the (T,4 K) spin freezing transition. While this transition is superficially similar to that in a spin glass, there are important qualitative differences from spin glass behavior: the freezing temperature increases slightly with applied magnetic field, and the distrib...
متن کاملDirty spin ice: The effect of dilution on spin freezing in Dy2Ti2O7
We have studied spin freezing in the diluted spin ice compound Dy22xYxTi2O7 where the nonmagnetic Y ions replace the magnetic Dy ions on the frustrated pyrochlore lattice. Magnetic ac and dc susceptibility data are presented with an analysis of relaxation times for dilutions of x50, 0.1, 0.2, and 0.4. Site dilution apparently decreases the relative number of spins participating in the icelike f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2011